
PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Semiclassical inequivalence of polygonalized billiards

Debabrata Biswas
Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India

~Received 2 November 1999!

Polygonalization of any smooth billiard boundary can be carried out in several ways. We show here that the
semiclassical description depends on the polygonalization process and the results can be inequivalent. We also
establish that generalized tangent polygons are closest to the corresponding smooth billiard and for de Broglie
wavelengths larger than the average length of the edges, the two are semiclassically equivalent.

PACS number~s!: 05.45.Mt, 05.45.Ac
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I. INTRODUCTION

Classical billiards are enclosures within which a parti
moves freely and, on collision, reflects specularly from
boundary. The nature of the dynamics thus depends solel
the shape of the enclosure and can vary from integrable
tion in case of the circle billiard to hard chaos for the ov
lapping three-disk enclosure. In both these examples,
boundary consists of smooth curves and while these are
iting cases, generic smooth enclosures give rise to inter
tent motion. As opposed to such billiards, there exists a
egory of polygonal billiards where the boundary consists
straight edges alone. These are nonchaotic and generi
nonintegrable@1,2#. However, any smooth billiard can b
polygonalizedand in more ways than one.

Figure 1 shows two ways of approximating a three-d
enclosure by polygons and, at the classical level, they
both inequivalent since their invariant surfaces have differ
topologies~see Sec. II!. Let D l max denote the largest devia
tion of the tangent polygon from the smooth billiard alo
the boundary. The question that we shall address here is
de Broglie wavelengthsl.D l max are these polygons sem
classically equivalent@3# to the smooth billiard? Naively
one might expect that they are, since forl.D l max, the sys-
tem should be unable to distinguish between the vari
polygonalized versions and the smooth billiard. Indeed, s
an argument lies at the heart of the discussions in the wor
Cheon and Cohen@4# where they consider a polygonal ve
sion @5# of the Sinai billiard and observe GOE~Gaussian
orthogonal ensemble of random matrices! statistics in the
level fluctuations@6,7#. However, there are various other in
stances of polygonal billiards@8# which exhibit GOE-like
fluctuations in a given energy range but do not resemble
chaotic enclosure. Thus, the question of semiclass
equivalence cannot be inferred from such evidence.
work of Tomiya and Yoshinaga@9# is, however, of greate
significance here. They consider polygonalization of
Bunimovich stadium by a generalized tangent construc
@10# and observe that apart from statistical measures, sev
finer features of the stadium are carried over to the tang
polygon. For instance, a fourier transform of the spec
density reveals a correspondence between the length s
trum of the stadium and the polygon. In addition, individu
eigenfunctions in the polygon exhibit scarring, a pheno
enon first observed in the stadium billiard@11#. The argu-
ments of Tomiya and Yoshinaga, however, seem to sug
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that the only quantities relevant arel andD l max so that there
might be little to distinguish between appropriately chos
tangent and step polygons forl.D l max. In what follows, we
shall explore this question in greater detail and attemp
provide an answer.

The paper is organized along the following lines. In S
II, we shall deal with the classical aspects of polygonal b
liards in general and examine the special features of tan
polygons. In Sec. III, we shall first carry out a semiclassi
analysis for generic polygons and then deal with polygon
ized billiards. We shall show that generalized tangent po
gons are semiclassically equivalent to smooth polyg
while step polygons are not. A summary of our results a
conclusions can be found in Sec. IV.

II. CLASSICAL DYNAMICS

A. Polygonal billiards

A notable aspect of generic polygons is the presence
vertices with internal angles$pmi /ni%,mi.1. Whenmi51
the wedge isintegrable and a parallel band of trajectorie
continues to remain parallel after an encounter with
wedge. Whenmi.1, the band splits up and traverses diffe
ent paths~see Fig. 2!. The presence of many such vertic
leads to multiple splits in the band as it evolves in tim
Interestingly, positive ‘‘effective’’ Lyapunov exponents hav
been observed in polygonalized billiards@12#.

FIG. 1. Two polygonalizations of the 3-disk billiard. We sha
refer to the one on the left as thestep-polygonand the one on the
right as thegeneralized tangent-polygonsince the edges approxi
mate the local tangents. In case the polygon is formed from
intersection of local tangents, we shall refer to it as atangent poly-
gon ~see Fig. 4!.
5073 ©2000 The American Physical Society
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The topology of the invariant surface of any polygon
billiard can be determined from its genus

g511
N
2 (

i

mi21

ni
, ~1!

whereN is the least common multiple of$ni% @13#. Thus, for
an integrable billiard,g51 so that its invariant surface i
topologically equivalent to a torus. In the context of polyg
nalized billiards, it is interesting to note that while for
circle g51 a polygonalized circle has a very high gen
@14#. Also, the step and tangent-polygons of Fig. 1 have d
ferent genus while the invariant surface of the smooth c
otic billiard is the three-dimensional constant energy surfa

In any dynamical system, an important set of trajector
are the periodic orbits which live for all times and close
both position and momentum. In case of a billiard, the init
and final velocities are related by a product of reflection m
trices, and, for a polygon where the total number of disti
matrices is finite, it is possible to obtain conditions for pe
odicity in momentum @15#. We shall use the symbol
$1,2, . . . ,N% to denote theN sides of the polygon and labe
trajectories by a string of symbolss1s2•••sn where si
P$1,2, . . . ,N%. Thus a sequence 1323 denotes a traject
that reflects off sides 1, 3, 2, and 3, respectively. Let
denote byRi ,i 51,N the 232 reflection matrices of theN
sides. These can be expressed in terms of the angleu i be-
tween the outward normal to a side and the positiveX axis:

Ri5S 2cos~2u i ! 2sin~2u i !

2sin~2u i ! cos~2u i !
D . ~2!

Thus, for the sequence 1323, the initial and final velocit
are related by

S vx
f

vy
f D 5R3sR2sR3sR1S vx

i

vy
i D 5R1323S vx

i

vy
i D , ~3!

where the superscriptsf and i refer, respectively, to the fina
and initial velocity whose components arevx and vy . It is
easy to verify that when the number of reflections is odd

FIG. 2. Parallel rays move away after an encounter with
nonintegrable (3p/2) vertex.
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Rs1s2•••sn

(odd) 5S 2cos~wo! 2sin~wo!

2sin~wo! cos~wo!
D , ~4!

where wo52(u11u31•••1un)22(u21u41•••1un21)
while for even number of reflections (n even!

Rs1s2•••sn

(even) 5S cos~we! sin~we!

2sin~we! cos~we!
D , ~5!

wherewe52(u11u31•••1un21)22(u21u41•••1un).
Obviously, the initial and final velocities can be equal

the resultant reflection matrixRs1s2•••sn
has a unit eigen-

value. For evenn ~the case of bands or families!, the eigen-
values aree6ıwe so that the condition for the existence of
unit eigenvalue is

we50 mod~2p!. ~6!

For oddn on the other hand, the product of the eigenvalu
l1l251. The eigenvector corresponding to a unit eige
value is„sin(wo/2),2cos(wo/2)… so that if a real orbit exists
with the sequences1s2•••sn , its initial and final velocities
are equal.

In the event that a sequence repeats itself~denoted by
s1s2•••sn! and there exists a unit eigenvalue of the result
matrix Rs1s2•••sn

, stability considerations guarantee that a p
riodic orbit exists. To see this, consider first an odd boun
orbit (n odd! for which sn115s1 and the initial and final
velocities are equal. Assume further that the initial and fi
segments of the trajectory are separated by a distanced along
the edges1. It is then easy to verify that an isolated period
orbit exists exactly in between the two segments~i.e., at a
distanced/2 from either segment! with the same velocity.
For the evenn case, note first that Eq.~6! does not select a
particular eigenvelocity. In other words, there is a range
initial velocities for which~i! s15sn11, ~ii ! the trajectories
follows the same sequences1s2•••sn , and ~iii ! the initial
and final velocities are equal. For convenience, assum
before that the trajectory starts from edges1, encountersn
bounces, and reflects off the same edge after traversin
length l to become parallel to the initial segment. Furth
assume that the two parallel segments are separated
distanced. It then follows that a periodic family exists with
velocity correctionDf.d/ l . In practice, one can rapidly
converge to the correct angle after a few corrections@16,17#.

We have thus obtained conditions for the existence
periodic orbits in polygonal enclosures. Note that in t
neighborhood of every polygonPi for which a sequence
s1s2•••sn yields a periodic family, there exists an infinity o
polygons for which this sequence results in a closed alm
periodic ~CAP! family of orbits @15#. These orbits close in
position but the anglewe between the initial and final mo
mentum~at the point where the orbit closes! is nonzero but
small. In contrast,we50 for periodic families. CAP orbit
families play a special role in the classical dynamics
tangent-polygons as we shall now show.

B. Tangent polygons

We shall deal with a~generalized! tangent polygon con-
sisting of N edges which approximates a chaotic three-d

e
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billiard as shown in Fig. 1. Individual edges thus have
average lengthl av5L/N where L is the perimeter of the
smooth billiard. We shall show here that forN sufficiently
large, the neighborhood of isolated periodic orbits in t
smooth billiard is well approximated by~i! closed almost-
periodic families of the tangent-polygon for evenn and ~ii !
isolated marginally stable periodic orbits together with t
closed orbits in their neighborhood for oddn.

Consider thus an unstable isolated periodic orbit in
smooththree-disk billiard with symbol sequences1s2•••sn
wheresjP$1,2,3% corresponding to the three sides andn is
the number of bounces or the topological length of the
jectory. Associated with this periodic orbit is a cylinder
extentJi

(n) within which all orbits follow the same symbo
sequence@18,19#. Obviously, Ji

(n) depends on the stability
and the length of the periodic orbit. In the correspond
tangent polygon, ifn is reasonably small (n,nmax) and N
large @nmax5nmax(N)#, most trajectories in the cylinder su
vive the sequence in which the polygonalized disks are
ited @20#. Note that corresponding to every isolated perio
orbit in the smooth billiard, there exists a set ofn tangents~at
the points of impact! off which the orbit reflects. In the un
likely event that the tangent polygon has exactly this se
its edges, a periodic orbit trivially exists in the polygonaliz
billiard as well. In general however, the set of tangents
only be approximatedby one or more sets of edges in th
polygon.

Consider first the case whenn is even. Clearly, for any
@21# set of edges that preserves the sequence in which
polygonalized disks are visited,weÞ0 and hence a periodi
orbit family does not exist. However, if the approximation
good,we will be small so that a closed almost-periodic fam
ily exists where the angle between the initial and final m
mentum iswe . Within this family, the difference in length o
two orbits is weq' where q' is the transverse separatio
between the two@15#. Thus, if we is small, the variation in
length within the family is slow. In general, there can
more than a single set of such closed almost-periodic fam
depending onN and the stability of the isolated periodic orb
and for one of these, the average length will be close to
of the isolated periodic orbit. The variation in length
closed almost-periodic orbits is schematically shown in F
3 @case~a!# where the dashed curve describes the neighb
hood of the isolated periodic orbit. Clearly, with an increa
in N, the number of families increase, their widths decre
and the approximation of the neighborhood by clos
almost-periodic families gets better. For the case of oddn,

FIG. 3. Schematic variation of the actionS(x) in the transverse
directionx5q' for ~a! evenn closed almost-periodic families an
~b! odd n closed orbits in the tangent polygon.
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assume that an isolated unstable periodic orbit exists for
sequences1s2•••sn in the smooth billiard with an initial
velocity that can be calculated from the set of tangents to
boundary at the points of impact. For every set~of edges!
that approximates these tangents, there exists in the poly
an isolated marginally stable periodic orbit with a slight
different initial velocity owing to the difference inwo . On
either side however, there exist closed orbits that foll
the same sequence and whose length increases asl (q')
5 l (0)$11@2q' / l (0)#2%1/2 where l (0) is the length of the
periodic orbit andq' measures the transverse distance fr
it. As before, for every set of edges that approximates
tangents, one can observe this behavior so that the varia
in length in the neighborhood of the unstable isolated p
odic orbit is schematically as shown in Fig. 3@case~b!#.

Apart from the closed almost-periodic orbits, there ex
an infinite number of exact periodic orbit families in eve
polygonalized billiard. The extent of these families is limite
by the length of the smallest edge and within each such f
ily, periodic orbits have identical length. ForN sufficiently
large however, along with every set of edges that gives
to an exact periodic family, there exist other sets of edges
which orbits follow the same sequence but are almost p
odic. The variation in length is thus only marginally differe
from that shown schematically in Fig. 3@case~a!# with one
band having constant length while in the others, the len
changes linearly within the band.

C. Step polygons, etc.

We now turn our attention to the step polygon of Fig.
Obviously, the edges do not locally approximate the tang
at any point of the smooth billiard so that the cylinderJi

(n)

does not survive even for smalln. In fact, there exist severa
families of bouncing ball orbits in the step polygon of Fig.
which have no correspondence in the smooth billiard. In
dition, all periodic orbits have evenn and closed almost-
periodic families do not exist in this case. Thus the class
dynamics in the neighborhood of isolated unstable perio
orbits is not approximated by closed orbits in the step po
gon.

There are several other methods of polygonalizing smo
billiards and in each of these, the symbolic dynamics of
smooth billiard cannot survive unless the edges locally
proximate the tangents. In summary then, generalized
gent polygons are the only systems in which the class
dynamics of smooth billiards is locally preserved forn
,nmax.

III. SEMICLASSICS

A. Generic Polygons

Having established a correspondence between the cl
cal dynamics of the smooth billiard and the tangent polyg
we shall now consider the quantum problem and deriv
semiclassical expression for its density of states. The star
point in such an analysis is the relation@22#

(
n

1

E2En
5E dq G~q,q;E! ~7!
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5076 PRE 61DEBABRATA BISWAS
.E dq Gsc~q,q;E! ~8!

where$En% are the energy eigenvalues andGsc refers to the
semiclassical energy-dependent propagator~Green’s func-
tion!. For a polygonal billiard,

Gsc~q,q8;E!52ı(
1

A8pıkl~q,q8!
eıkl(q,q8)2ımp/2, ~9!

where the sum runs over all orbits at energyE5k2 between
q and q8 having lengthl (q,q8) and m is twice the number
~n! of reflections at the boundary. For convenience, we h
chosen the massm51/2 and\51

In the limit k→`, the only trajectories that survive th
trace operation are the periodic orbits@22#. As mentioned
earlier, even bounce periodic orbits occur in families ov
which the length of the orbit does not vary and for the
*dq5ap whereap refers to the area occupied by a primitiv
periodic orbit@23#. For the odd-bounce case, a local coor
nate system (qi ,q') needs to be introduced whereqi is the
position along the isolated periodic orbit andq' measures
the transverse distance from the periodic orbit. Since
length does not vary along the orbit,rqi5 l p8 where l p8 is
the length of the primitive periodic orbit. Theq' integration
can be performed by the stationary phase approximation
ing the expression forl (q') given earlier. Thus,

r~E!5(
n

d~E2En!

52
1

p
lim
e→0

Im
1

E1 i e2En

.rav~E!1(
p

(
r 51

`
ap

A8p3krl p

cos~krl p2p/4!

2(
p8

(
r 851

`
l p8

4pk
cos~kr8l p8!. ~10!

whererav is the average density of states and the sums o
p and p8 run over ~primitive! families and isolated orbits
respectively having lengthl p and l p8 .

For finite k, however, Eq.~10! is inadequate for generi
polygons and the most prominent correction that has so
been taken into account arises from diffraction@24–26#. It
has recently been shown@15# that closed almost-periodic or
bit families contribute as well and with weights comparab
to those of periodic orbit families whenwe is small. The
correct trace formula can be derived by noting that fo
closed almost-periodic familyl (q')5 l (0)1q'we , where
l (0)5 l i is the length of the orbit in the center of the ba
andq' varies from2wp/2 to wp/2. Assuming thatk is suf-
ficiently large, the amplitude@1/l (q')# can be treated as
constant (1/l i) and the trace formula for finitek is then
e

r
e

-

e

s-

er

ar

a

r~E!.rav~E!1(
i

ai

A8p3kl i
cos~kl i2p/4!

3
sin~kwe

( i )wi /2!

kwe
( i )wi /2

2(
p8

(
r 851

`
l p8

4pk
cos~kr8l p8!.

~11!

In Eq. ~11!, the sum overi runs over closed almost-periodi
and periodic orbit families andl i is the ~average! length of
such a family. Note that ask→`, the contribution of CAP
families (we

( i )Þ0) vanishes and Eq.~11! reduces to Eq.~10!.
For de Broglie wavelength,l@p(wpwe

( i )), however, the
( i th! closed almost-periodic orbit family contributes with
weight comparable to that of periodic families@O(1/k1/2)#
and hence assumes greater significance than diffraction
terestingly, such orbits clearly show up in eigenfunctio
@27# and the phenomenon has been referred to as ‘‘scar
by ghosts of periodic orbits’’ since such a periodic orbit e
ists only in a neighboring polygon.

Note that almost-periodic closed orbit families do n
generally occur in systems where the number of directi
accessible to a trajectory is small since the~average! angle of
intersection is large. Thus in step billiards or in systems w
very low genus, almost-periodic families do not contribu
significantly. In generic polygons, however, these orbits
the key to semiclassical quantization.

B. Tangent polygons

Although Eq. ~11! holds for generic polygons, we sha
use a somewhat different approach for the tangent-polyg
where several families of closed almost-periodic families
ist together with a gradual change in length. This variat
can be approximated by a smooth curve as depicted s
matically in Fig. 3. ForN sufficiently large, it is reasonable
to choose the smooth curve as the one which describes
~linearized! neighborhood of the isolated unstable period
orbit in the chaotic billiard and the error so introduced can
evaluated. Thus instead of summing over nearby bands
shall carry out a single integration for every periodic s
quence. The trace operation then leads to the trunc
Gutzwiller trace formula

r~E!.rav~E!1
1

k F (
Tp,T*

(
r 51

`
l p

2pAudet~Jp
r 2I !u

3cos~krl p2rmpp/2!1Dr11Dr2G ~12!

with errorsDr1 andDr2. In Eq. ~12!, Tp5 l p/2k is the time
period of a primitive periodic orbit,Jp is the Jacobian matrix
arising from a linearization of the flow in the neighborhoo
of a periodic orbit, andmp is the Maslov index associate
with the primitive orbit.

Of the errors, the first,Dr1, arises due to the restriction o
the periodic orbit sum to orbits of lengthTp,T* since the
correspondence between the smooth billiard and the tan
polygon exists only forn,nmax. Obviously, limN→` Dr1
50. We shall, however, consider tangent polygons for wh
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T* .TH (TH is the Heisenberg time! such that the energy
eigenvalues evaluated using the truncated periodic orbit
gives a faithful approximation to the true eigenvalues$En%.
Thus, we shall neglectDr1 henceforth.

The errorDr2 arises due to the approximation shown
Fig. 3 and a crude estimate of this can be obtained by ass
ing that the length is constant within a band. The error is th

Dr2.(
i

wi
2

2
f 8~xi !, ~13!

wherewi is the width of thei th band,xi is the value ofq'

within the i th band for whichl (q') equals the value of the
smooth curve, and

f ~q'!;k1/2eıkl(q'). ~14!

Thus,

Dr2;(
i

wi
2k3/2; l av

2 k3/25
L 2k3/2

N2
. ~15!

In writing the above we have used the facts that the ma
mum width wi of a periodic orbit band is limited by the
average lengthl av of the edges. We may further assume th
the number of families corresponding to a cylinderJ̄i

(n) is
small compared toN so that Dr2;k3/2/N2. Thus for k
!CN4/3, the tangent polygon is semiclassically equivalent
the smooth billiard whereC is a positive constant which de
pends on the exact form off (x).

It may be noted that a special construction of tang
polygon occurs in the boundary integral method of evalu

FIG. 4. Construction of a polygon using the tangents at
points$sn%.
m

m-
n

i-

t

o

t
t-

ing quantum eigenvalues. Here, the Schro¨dinger equation is
reduced to an eigenvalue problem for an integral operatoK
@28#

c~s!5 R ds8c~s8!K~s,s8;k!, ~16!

K~s,s8;k!52
ık

2
cosu~s,s8!H1

(1)~kusW2sW8u!, ~17!

cosu~s,s8!5n̂~sW !• r̂~s,s8!, ~18!

whereE5k2, r̂(s,s8)5(sW2sW8)/usW2sW8u, andn̂(sW) is the out-
ward normal at the pointsW. The unknown function is now the
normal derivative on the boundary

c~s!5n̂~sW !•¹C~sW ! ~19!

and the full interior eigenfunction can be recovered throu
the mapping

C~q!52
ı

4 R ds H0
(1)~kusW2sW8u!c~s!. ~20!

In practice, the boundary is discretized with the number
pointsN.Lk/p @29#. Equation~16! then reduces to a matrix
equation leading to the consistency condition

det@ I 2D l K ~k!#50, ~21!

whereD l is the incremental distance along the boundary a
I is the identity matrix. Note that for a straight edge,Knn
50 while for a curved boundary,Knn561/(2pRn) where
Rn is the local radius of curvature at the boundary pointsn
and the1 and2 signs are for convex and concave boun
aries, respectively.

The corresponding tangent polygon may be construc
by the intersection of the tangents at the boundary pointssn
as shown in Fig. 4 and this in turn may be solved using
boundary integration method with the same set of poi
$sn%. The only difference then would be the local curvatu
in the diagonal matrix element, which for any polygon
zero. The error so generated is similar to the approxima

e

TABLE I. A comparison of the exact and semiclassical eige
values of the three disk with the exact and semiclassical eigenva
of the corresponding tangent polygon. Neglect of the curvature t
makes little difference compared to the semiclassical approxi
tion.

k3 disk
exact kpolygon

exact k3 disk
semi kpolygon

semi

1505.11325 1505.11324 1505.16810 1505.1680
1505.17526 1505.17527 1505.24944 1505.2494
1505.37518 1505.37518 1505.43624 1505.4362
1505.49791 1505.49792 1505.55890 1505.5589
1505.59969 1505.59969 1505.65119 1505.6511
1505.72383 1505.72382 1505.78927 1505.7892
1505.77798 1505.77798 1505.83193 1505.8319
1505.83710 1505.83709 1505.89083 1505.8908
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5078 PRE 61DEBABRATA BISWAS
of Fig. 3 where we replace the steps by a smooth cu
which contains information about the local curvatures at
points of impact.

To test this assertion, we have evaluated the eigenva
using the boundary integral method for an intersecting thr
disk system with ~a! Knn50 in one case and~b! Knn
51/(2pRn) in the other. In both cases,N52Lk/p where
L51. Table I lists the four sets of eigenvalues in the ran
1505,k,1506. The first two are the exact quantum eige
values for the three-disk and the tangent polygon (Knn50)
while the eigenvalues in the third and fourth columns
determined using the asymptotic form of the Hankel funct
H1

(1) and are referred to as the ‘‘semiclassical’’ eigenvalu
@29#. Clearly, the polygonalization error is small compared
the semiclassical error so that the two systems are equiva

C. Circles, step polygons, etc.

It is easy to see that the analysis carried out so far ho
for other smooth billiards which are nonchaotic and wh
periodic orbits may occur in families. An extreme case is
circle billiard where under similar conditions, a one to o
correspondence between its periodic orbits and those of
tangent polygon exists. However, rather than a single fam
of periodic orbits with a sharply defined action and angu
momentum, there exists in the tangent polygon, a numbe
closed almost-periodic bands~or isolated periodic orbits and
the associated closed orbits in its neighborhood whenn is
odd!. When the variation in length across these families
small (N large!, it can be replaced by a constant length ty
cal of periodic orbit families and the error so generated
be similarly evaluated.

In case of the step polygon of Fig. 1, only the Weyl te
in the density of states agrees with that of the three-d
billiard as the areas can be made identical in an approp
construction. The contributions from periodic orbits a
l
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bound to differ as explained in Sec. II and diffractive corre
tions are both significant and different from those in t
three-disk. Thus, the two systems are inequivalent.

IV. CONCLUSIONS

We have addressed the question of semiclassical equ
lence of polygonalized billiards in this paper and in the p
cess analyzed the conditions under which orbits are perio
in generic polygons. We have also provided a trace form
for finite energy that includes contributions from clos
almost-periodic orbit families. Since their weights can
comparable to those of periodic orbit families, such orb
must be included in any realistic semiclassical calculatio

In summary, polygonalized billiards aresemiclassically
equivalent to smooth billiards in appropriate energy ran
only when the edges locally approximate the tangents to
boundary of the smooth billiard. In other cases such as
step polygon, the classical dynamics has no correspond
with the smooth billiard and the two are not semiclassica
equivalent.

The results of this paper can be applied to statistics
quantum energy levels with interesting consequences and
shall briefly discuss these here. It is obvious that given a
smooth billiard, there exist tangent polygons whose ene
levels faithfully approximate those of the smooth billiard in
range that increases with the number of sides in the polyg
Thus, the level statistics in this range can vary from Pois
to GOE depending on the statistics of the smooth billiard.
finite energies therefore, polygonal billiards do not belong
any universality class. This, however, does not preclude
existence of universality in a subclass of polygons such
generic triangular billiards. It also follows that level statisti
at finite energies does not depend on the genus within
broad class of polygons.
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