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Semiclassical inequivalence of polygonalized billiards
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Polygonalization of any smooth billiard boundary can be carried out in several ways. We show here that the
semiclassical description depends on the polygonalization process and the results can be inequivalent. We also
establish that generalized tangent polygons are closest to the corresponding smooth billiard and for de Broglie
wavelengths larger than the average length of the edges, the two are semiclassically equivalent.

PACS numbds): 05.45.Mt, 05.45.Ac

. INTRODUCTION that the only quantities relevant axeandAl S0 that there

Classical billiards are enclosures within which a particleMight be little to distinguish between appropriately chosen
moves freely and, on collision, reflects specularly from thel@ngent and step polygons foP- Al . In what follows, we

boundary. The nature of the dynamics thus depends solely oi'@!l explore this question in greater detail and attempt to

the shape of the enclosure and can vary from integrable m&ro_l\_’r'lde an answer. dal the following li ns
tion in case of the circle billiard to hard chaos for the over- € paper 1S organized along the following 1ines. In Sec.

lapping three-disk enclosure. In both these examples, th”’ we shall deal with the classical aspects of polygonal bil-

boundary consists of smooth curves and while these are li ffards in general and examine the special features of tangent
y olygons. In Sec. Ill, we shall first carry out a semiclassical

iting cases, generic smooth enclosures give rise to intermi 'nalysis for generic polygons and then deal with polygonal-

tent motion. As opposed to such billiards, there exists a caqq pjjliards. We shall show that generalized tangent poly-
egory of polygonal billiards where the boundary consists ofyos are semiclassically equivalent to smooth polygons

straight edges alone. These are nonchaotic and genericalfyhjle step polygons are not. A summary of our results and
nonintegrable[l,Z]. HOWeVer, any smooth billiard can be conclusions can be found in Sec. IV.

polygonalizedand in more ways than one.

Figure 1 shows two ways of approximating a three-disk
enclosure by polygons and, at the classical level, they are Il. CLASSICAL DYNAMICS
both inequivalent since their invariant surfaces have different A. Polygonal billiards
topologies(see Sec. )l Let Al o denote the largest devia-
tion of the tangent polygon from the smooth billiard along
the boundary. The question that we shall address here is f
de Broglie wavelengthd > Al ., are these polygons semi-

A notable aspect of generic polygons is the presence of

rtices with internal angle§mm; /n;},m;>1. Whenm;=1

e wedge isintegrableand a parallel band of trajectories
. . o . continues to remain parallel after an encounter with the
classpally equivalen(3] to the S’.“OO”‘ billiard? Naively, wedge. Whemm;>1, the band splits up and traverses differ-
one might expect that they are, since for Al may, the SYS™ ent paths(see Fig. 2 The presence of many such vertices
tem should be unable to distinguish between the varioug,,q4s to multiple splits in the band as it evolves in time.
polygonalized versions and the smooth billiard. Indeed, SUCflhterestingly, positive “effective” Lyapunov exponents have
an argument lies at the heart of the discussions in the work gfeen observed in polygonalized billiarfE2].
Cheon and Cohef] where they consider a polygonal ver-
sion [5] of the Sinai billiard and observe GOEaussian
orthogonal ensemble of random matricesatistics in the
level fluctuationd 6,7]. However, there are various other in-
stances of polygonal billiardg8] which exhibit GOE-like
fluctuations in a given energy range but do not resemble any
chaotic enclosure. Thus, the question of semiclassical
equivalence cannot be inferred from such evidence. The
work of Tomiya and Yoshinagf9] is, however, of greater
significance here. They consider polygonalization of the
Bunimovich stadium by a generalized tangent construction
[10] and observe that apart from statistical measures, several
finer features of the stadium are carried over to the tangent

polygon. For instance, a fourier transform of the spectral giG. 1. Two polygonalizations of the 3-disk billiard. We shall
density reveals a correspondence between the length spagfer to the one on the left as tistep-polygorand the one on the
trum of the stadium and the polygon. In addition, individual right as thegeneralized tangent-polygasince the edges approxi-
eigenfunctions in the polygon exhibit scarring, a phenom-mate the local tangents. In case the polygon is formed from the
enon first observed in the stadium billiafdil]. The argu- intersection of local tangents, we shall refer to it asmgent poly-
ments of Tomiya and Yoshinaga, however, seem to suggegbn (see Fig. 4
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whereg=2(01+ 603+ - +60,_1)—2(0,+ 0, +---+86,).
Obviously, the initial and final velocities can be equal if
the resultant reflection matriiRSlsz__.Sn has a unit eigen-
- value. For evem (the case of bands or familigghe eigen-
values aree™'#® so that the condition for the existence of a
unit eigenvalue is

EIG. 2. Parallel rays move away after an encounter with the ©=0 mod2m). (6)
nonintegrable (2/2) vertex.

(odd)  _
$1S2° Sy

: (4)

For oddn on the other hand, the product of the eigenvalues
The topology of the invariant surface of any polygonal\;\,=1. The eigenvector corresponding to a unit eigen-

billiard can be determined from its genus value is(sin(¢y/2),— cosp,/2)) so that if a real orbit exists
with the sequencs;s,- - -s,, its initial and final velocities

g=1+ ﬁfz m—1 1 ae equal.
245 n ’ In the event that a sequence repeats it¢génoted by

$1S,- - - S,) and there exists a unit eigenvalue of the resultant

where/N is the least common multiple ¢h;} [13]. Thus, for  matrix R5132' . stability considerations guarantee that a pe-
an integrable billiardg=1 so that its invariant surface is yigdic orbit exists. To see this, consider first an odd bounce
topologically equivalent to a torus. In the context of polygo-orhit (n odd) for which s, . ;=s, and the initial and final
nalized billiards, it is interesting to note that while for a yejocities are equal. Assume further that the initial and final
circle g=1 a polygonalized circle has a very high genussegments of the trajectory are separated by a disthateng
[14]. Also, the step and tangent-polygons of Fig. 1 have difthe edges, . It is then easy to verify that an isolated periodic
ferent genus while the invariant surface of the smooth chagpit exists exactly in between the two segmefits., at a
otic billiard is the three-dimensional constant energy surfacegistanced/2 from either segmentwith the same velocity.

In any dynamical system, an important set of trajectorieg=or the evem case, note first that EG6) does not select a

are the periodic orbits which live for all imes and close in particular eigenvelocity. In other words, there is a range of
both position and momentum. In case of a billiard, the initialjnitial velocities for which(i) s;=s,. 1, (i) the trajectories

and final velocities are related by a product of reflection masg|1ows the same sequenags,- - -s,, and (iii) the initial

trices, and, for a polygon where the total number of distinctynq final velocities are equal. For convenience, assume as
matrices is finite, it is possible to obtain conditions for peri- hafore that the trajectory starts from edge encounters
odicity in momentum[15]. We shall use the symbols p,nces, and reflects off the same edge after traversing a
{1.2,... N} to denote theN sides of the polygon and label |engih| to become parallel to the initial segment. Further,
trajectories by a string of symbols;s,---s, where's;  assume that the two parallel segments are separated by a
€{1,2,... N}. Thus a sequence 1323 denotes a trajectoryjjstanced. It then follows that a periodic family exists with a
that reflects off sides 1, 3, 2, and 3, respectively. Let USg|ocity correctionA ¢=d/I. In practice, one can rapidly
denote byR;,i=1N the 2x2 reflection matrices of th&l  ¢onyerge to the correct angle after a few correctidgs17.
sides. These can be expressed in terms of the afjgie- We have thus obtained conditions for the existence of
tween the outward normal to a side and the posivaxis:  periodic orbits in polygonal enclosures. Note that in the
_ neighborhood of every polygoR' for which a sequence

_ —cod26;) —sin(26;) @) $1S,- - - S, yields a periodic family, there exists an infinity of

t —sin(26,) cog26))/" polygons for which this sequence results in a closed almost
periodic (CAP) family of orbits [15]. These orbits close in
Thus, for the sequence 1323, the initial and final velocitiegosition but the angle, between the initial and final mo-

are related by mentum(at the point where the orbit clogeis nonzero but
small. In contrastp.=0 for periodic families. CAP orbit
Uy vl vl families play a special role in the classical dynamics of
(vf> =R30R,0R30R, ol ) = R1323( ol ) : (3)  tangent-polygons as we shall now show.
y y y

where the superscripfsandi refer, respectively, to the final B. Tangent polygons

and initial velocity whose components arg andv, . It is We shall deal with ggeneralizegl tangent polygon con-
easy to verify that when the number of reflections is odd sisting of N edges which approximates a chaotic three-disk
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A assume that an isolated unstable periodic orbit exists for the
sequences;S,- - -S, in the smooth billiard with an initial
(@ velocity that can be calculated from the set of tangents to the
. =T boundary at the points of impact. For every gef edge$
that approximates these tangents, there exists in the polygon
=g S an isolated marginally stable periodic orbit with a slightly
) different initial velocity owing to the difference ip,. On
= either side however, there exist closed orbits that follow
X the same sequence and whose length increasd{ga3

FIG. 3. Schematic variation of the acti®{x) in the transverse =|(_0){1+[2,ql/|(0)]2}1/2 wherel(0) is the '9”9”‘ of the
directionx=q, for (a) evenn closed almost-periodic families and periodic orbit andy, measures the transverse distance from
(b) odd n closed orbits in the tangent polygon. it. As before, for every set of edges that approximates the

tangents, one can observe this behavior so that the variation
in length in the neighborhood of the unstable isolated peri-

S(x)

billiard as shown in Fig. 1. Individual edges thus have an . . . I
average length,,~ £/Ngwhere£ is the pgerimeter of the odic orbit is schematically as shown in Fig]&se(b)].

smooth billiard. We shall show here that fbir sufficiently Apart from the closed almost-periodic orbits, there exist
large, the neighborhood of isolated periodic orbits in thed" infinite number of exact periodic orbit families in every

smooth billiard is well approximated bgj) closed almost- polygonalized billiard. The extent of these families is limited
periodic families of the tangent-polygon for evarand (ii) by the length of the smallest edge and within each such fam-
isolated marginally stable periodic orbits together with theily, periodic orbits have identical length. Fof sufficiently
closed orbits in their neighborhood for odd large however, along with every set of edges that gives rise
Consider thus an unstable isolated periodic orbit in theo an exact periodic family, there exist other sets of edges for
smooththree-disk billiard with symbol sequenags,---s,  Which orbits follow the same sequence but are almost peri-
wheres; €{1,2,3; corresponding to the three sides amis  odic. The variation in length is thus only marginally different
the number of bounces or the topological length of the trafrom that shown schematically in Fig.[8ase(a)] with one
jectory. Associated with this periodic orbit is a cylinder of band having constant length while in the others, the length
extentJ(™ within which all orbits follow the same symbol changes linearly within the band.
sequencd18,19. Obviously, J!" depends on the stability
and the length of the periodic orbit. In the corresponding C. Step polygons, etc.
tangent polygon, ifn is reasonably smalln<n,) and N
large [ Nmax=Nmad{N)], most trajectories in the cylinder sur- . .
vive the sequence in which the polygonalized disks are vispr'OUS|y_' the edges do not !opally approximate the ta)ngent
ited [20]. Note that corresponding to every isolated periodic@t @ny point of the smooth billiard so that the gylmdlé?
orbit in the smooth billiard, there exists a setafingentgat does not survive even for smaill In fact, there exist several
the points of impagtoff which the orbit reflects. In the un- families of bouncing ball orbits in the step polygon of Fig. 1
likely event that the tangent polygon has exactly this set a¥hich have no correspondence in the smooth billiard. In ad-
its edges, a periodic orbit trivially exists in the polygonalizeddition, all periodic orbits have even and closed almost-
billiard as well. In genera| however, the set of tangents Ca,periodic families do not exist in this case. Thus the classical
0n|y be approximatedby one or more sets of edges in the dynamics in the neighborhood of isolated unstable periodic
polygon. orbits is not approximated by closed orbits in the step poly-
Consider first the case whenis even. Clearly, for any gon.
[21] set of edges that preserves the sequence in which the There are several other methods of polygonalizing smooth
p0|ygona|ized disks are Visiteqb,egﬁo and hence a periodic billiards and in each of these, the Symbolic dynamics of the
orbit family does not exist. However, if the approximation is Smooth billiard cannot survive unless the edges locally ap-
good, ¢, Will be small so that a closed almost-periodic fam- Proximate the tangents. In summary then, generalized tan-
ily exists where the angle between the initial and final mo-gent polygons are the only systems in which the classical
mentum isp, . Within this family, the difference in length of dynamics of smooth billiards is locally preserved for
two orbits is @0, wWhereq, is the transverse separation <Nmax-
between the twd15]. Thus, if ¢ is small, the variation in
length within the family is slow. In general, there can be Ill. SEMICLASSICS
more than a single set of such closed almost-periodic family
depending omN and the stability of the isolated periodic orbit
and for one of these, the average length will be close to that Having established a correspondence between the classi-
of the isolated periodic orbit. The variation in length of cal dynamics of the smooth billiard and the tangent polygon,
closed almost-periodic orbits is schematically shown in Figwe shall now consider the quantum problem and derive a
3 [case(a)] where the dashed curve describes the neighborsemiclassical expression for its density of states. The starting
hood of the isolated periodic orbit. Clearly, with an increasepoint in such an analysis is the relatif?2]
in N, the number of families increase, their widths decrease
and the e_lpp_roxime_lt_ion of the neighborhood by closed 2 _1 :f dq G(q,q:E) @)
almost-periodic families gets better. For the case of ndd n E—E,

We now turn our attention to the step polygon of Fig. 1.

A. Generic Polygons
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2f dg Gsd 9,0;E) ®) E E)+ >, ———cogkl;—w/4
p(E)=palE)+ 2 m g )

where{E,} are the energy eigenvalues a@g refers to the sin(kelw;/2) -3 i os(kr )

semiclassical energy-dependent propagdtreen’s func- kgo(')W /2 o -1 pr7

tion). For a polygonal billiard, 1D

S " In Eq. (11), the sum over runs over closed almost-periodic
0.9 E)=—12 We' (@a)=1um2 (9)  and periodic orbit families andl is the (average length of
mki(a.9") such a family. Note that als— 0, the contribution of CAP

families (qo(')a&O) vanishes and Eq11) reduces to Eq(10).

where the sum runs over all orbits at enefy k? between For de Broglie Wavelengthkx>7r(wp<p(')) however, the
g andq’ having lengthl(g,q’) and w is twice the number (ith) closed almost-periodic orbit family contributes with a
(n) of reflections at the boundary. For convenience, we haveveight comparable to that of periodic familie&(1/k*?)]
chosen the mass=1/2 and# =1 and hence assumes greater significance than diffraction. In-

In the limit k— o, the only trajectories that survive the terestingly, such orbits clearly show up in eigenfunctions
trace operation are the periodic orbja2]. As mentioned [27] and the phenomenon has been referred to as “scarring
earlier, even bounce periodic orbits occur in families overby ghosts of periodic orbits” since such a periodic orbit ex-
which the length of the orbit does not vary and for theseists only in a neighboring polygon.
Jdg=a, wherea, refers to the area occupied by a primitive ~ Note that almost-periodic closed orbit families do not
periodic orbit[23]. For the odd-bounce case, a local coordi-generally occur in systems where the number of directions
nate systemdj,q,) needs to be introduced whege is the ~ accessible to a trajectory is small since taeerage angle of
position along the isolated periodic orbit angd measures intersection is large. Thus in step billiards or in systems with
the transverse distance from the periodic orbit. Since thaery low genus, almost-periodic families do not contribute
length does not vary along the orbftq =1, wherel, is significantly. In generic polygons, however, these orbits are
the length of the primitive periodic orbit. Theg integration  the key to semiclassical quantization.
can be performed by the stationary phase approximation us-
ing the expression far(q, ) given earlier. Thus, B. Tangent polygons

Although Eq.(11) holds for generic polygons, we shall
use a somewhat different approach for the tangent-polygons
p(E)= ; S(E—En) where several families of closed almost-periodic families ex-
ist together with a gradual change in length. This variation
) can be approximated by a smooth curve as depicted sche-
- lim Im Etie—E. matically in Fig. 3. ForN sufficiently large, it is reasonable
0 " to choose the smooth curve as the one which describes the
(linearized neighborhood of the isolated unstable periodic
orbit in the chaotic billiard and the error so introduced can be

~p. (E)+ cogkrl,— /4 evaluated. Thus instead of summing over nearby bands we
pal ) % Zl v8mkrl, B ) shall carry out a single integration for every periodic se-
= quence. The trace operation then leads to the truncated
Y p’ cogkr'l) (10) Gutzwiller trace formula

(E)= E)-f-E E g—
p =pal k 1T r=1 271 |de‘(Jf_I)|

wherep,, is the average density of states and the sums over
p and p’ run over (primitive) families and isolated orbits
respectively having length, andl . . X cogKrl,—rpupm/2)+Apy+Ap, (12

For finite k, however, Eq(10) is inadequate for generic
polygons and the most prominent correction that has so far
been taken into account arises from diffracti@4—24. It with errorsAp; andAp,. In Eq.(12), T,=1,/2k is the time
has recently been show5] that closed almost-periodic or- period of a primitive periodic orbit], is the Jacobian matrix
bit families contribute as well and with weights comparablearising from a linearization of the flow in the neighborhood
to those of periodic orbit families wheg, is small. The of a periodic orbit, andu, is the Maslov index associated
correct trace formula can be derived by noting that for awith the primitive orbit.
closed almost-periodic family(q,)=1(0)+q, ¢, Where Of the errors, the firstA p,, arises due to the restriction of
1(0)=1; is the length of the orbit in the center of the bandthe periodic orbit sum to orbits of lengfh,<T* since the
andq, varies from—wy/2 to wp/2. Assuming thak is suf-  correspondence between the smooth billiard and the tangent
ficiently large, the amplitud@1/1(q,)] can be treated as a polygon exists only fom<n,,,,. Obviously, limy_.. Ap;
constant (1/) and the trace formula for finitk is then =0. We shall, however, consider tangent polygons for which
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TABLE I. A comparison of the exact and semiclassical eigen-
values of the three disk with the exact and semiclassical eigenvalues
of the corresponding tangent polygon. Neglect of the curvature term
makes little difference compared to the semiclassical approxima-

tion.
Kexact Kexact semi semi
3 disk polygon 3 disk polygon

1505.11325 1505.11324 1505.16810 1505.16809
1505.17526 1505.17527 1505.24944 1505.24945
1505.37518 1505.37518 1505.43624 1505.43624
1505.49791 1505.49792 1505.55890 1505.55890
1505.59969 1505.59969 1505.65119 1505.65119
1505.72383 1505.72382 1505.78927 1505.78926
1505.77798 1505.77798 1505.83193 1505.83192
1505.83710 1505.83709 1505.89083 1505.89082

ing quantum eigenvalues. Here, the Sclinger equation is
reduced to an eigenvalue problem for an integral opeiator

(28]
y(s)= j; ds’¢(s")K(s,s";k), (16)
’ 1k ’ (1) oo
FIG. 4. Construction of a polygon using the tangents at the K(s,s";k)=— - Cosd(s,s JHIV(K[s=s"]), (17
points{s,}.
T*>Ty (T4 is the Heisenberg timesuch that the energy cosé(s,s’)=n(s)-p(s;s"), (18)

eigenvalues evaluated using the truncated periodic orbit sum . . L .

gives a faithful approximation to the true eigenvaldgs). ~ WhereE=k?, p(s,;s")=(s=s")/[s=s[, andn(s) is the out-

Thus, we shall negleck p; henceforth. ward normal at the poirg. The unknown function is now the
The errorAp, arises due to the approximation shown in normal derivative on the boundary

Fig. 3 and a crude estimate of this can be obtained by assum-

ing that the length is constant within a band. The error is then P(s)= n(s)-V¥(s) (19
w? , and the full interior eigenfunction can be recovered through
APzZZ - P, (13 the mapping

wherew; is the width of theith band,x; is the value ofg, V(g)=— ! % ds HP(k|s—s']) y(s). (20)
within the ith band for whichl (g, ) equals the value of the 4

smooth curve, and ) o ) )
In practice, the boundary is discretized with the number of

f(q,)~kH2%ekI@n), (14)  pointsN=Lk/m [29]. Equation(16) then reduces to a matrix
equation leading to the consistency condition
Thus,
det[I —AIK(k)]=0, (21
21,32
Ap,~ >, wizk3/2~|§vk3/2=—2, (15)  whereAl is the incremental distance along the boundary and
i N | is the identity matrix. Note that for a straight edd¢,,
. =0 while for a curved boundanK,,=*=1/(2wR,) where
In writing the above we have used the facts that the maxir s the local radius of curvature at the boundary paint
mum width w; of a periodic orbit band is limited by the anq the+ and — signs are for convex and concave bound-
average length,, of the edges. We may further assume thatyies, respectively.
the number of families corresponding to a cylin@?) is The corresponding tangent polygon may be constructed
small compared toN so that Ap,~k®%N2. Thus fork by the intersection of the tangents at the boundary paints
<CN*? the tangent polygon is semiclassically equivalent toas shown in Fig. 4 and this in turn may be solved using the
the smooth billiard wher€ is a positive constant which de- boundary integration method with the same set of points
pends on the exact form d{x). {sn}- The only difference then would be the local curvature
It may be noted that a special construction of tangenin the diagonal matrix element, which for any polygon is
polygon occurs in the boundary integral method of evaluatzero. The error so generated is similar to the approximation
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of Fig. 3 where we replace the steps by a smooth curvéound to differ as explained in Sec. Il and diffractive correc-
which contains information about the local curvatures at theaions are both significant and different from those in the

points of impact. three-disk. Thus, the two systems are inequivalent.
To test this assertion, we have evaluated the eigenvalues
using the boundary integral method for an intersecting three- IV. CONCLUSIONS
disk system with(a) K,,=0 in one case andb) K,,
=1/(27R,) in the other. In both case®N=2,Lk/7 where We have addressed the question of semiclassical equiva-

L£=1. Table | lists the four sets of eigenvalues in the rangdence of polygonalized billiards in this paper and in the pro-
1505< k< 1506. The first two are the exact quantum eigen-cess analyzed the conditions under which orbits are periodic
values for the three-disk and the tangent polygkn & 0) in generic polygons. We have also provided a trace formula
while the eigenvalues in the third and fourth columns arefor finite energy that includes contributions from closed
determined using the asymptotic form of the Hankel functionalmost-periodic orbit families. Since their weights can be
H{" and are referred to as the “semiclassical” eigenvaluessomparable to those of periodic orbit families, such orbits
[29]. Clearly, the polygonalization error is small compared tomust be included in any realistic semiclassical calculation.
the semiclassical error so that the two systems are equivalent. |n summary, polygonalized billiards argemiclassically
equivalent to smooth billiards in appropriate energy ranges
C. Circles, step polygons, etc. only when the edges locally approximate the tangents to the

It is easy to see that the analysis carried out so far holg@oundary of the smooth billiard. In other cases such as the
for other smooth billiards which are nonchaotic and whereSteP polygon, the classical dynamics has no correspondence
periodic orbits may occur in families. An extreme case is theVith the smooth billiard and the two are not semiclassically
circle billiard where under similar conditions, a one to one€duivalent.
correspondence between its periodic orbits and those of the The results of this paper can be applied to statistics of
tangent polygon exists. However, rather than a single familyguantum energy levels with interesting consequences and we
of periodic orbits with a sharply defined action and angularshall briefly discuss these here. It is obvious that given any
momentum, there exists in the tangent polygon, a number amooth billiard, there exist tangent polygons whose energy
closed almost-periodic bandsr isolated periodic orbits and levels faithfully approximate those of the smooth billiard in a
the associated closed orbits in its neighborhood wheés  range that increases with the number of sides in the polygon.
odd). When the variation in length across these families isThus, the level statistics in this range can vary from Poisson
small (N large), it can be replaced by a constant length typi-to GOE depending on the statistics of the smooth billiard. At
cal of periodic orbit families and the error so generated carfinite energies therefore, polygonal billiards do not belong to
be similarly evaluated. any universality class. This, however, does not preclude the

In case of the step polygon of Fig. 1, only the Weyl termexistence of universality in a subclass of polygons such as
in the density of states agrees with that of the three-dislgeneric triangular billiards. It also follows that level statistics
billiard as the areas can be made identical in an appropriatgt finite energies does not depend on the genus within the
construction. The contributions from periodic orbits arebroad class of polygons.
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